Kafka- and Kinesis-based Stream Sources are supported with Tecton on Databricks and EMR. To bring streaming data into Tecton with Rift, use the Stream Ingest API.
Stream Data Sources with Kafka or Kinesis
This guide shows you how to create a Tecton StreamSource
that reads data from
Kafka or Kinesis. The StreamSource
can later be used by a StreamFeatureView
,
which generates feature values from the raw data that is retrieved by the
StreamSource
.
Using a notebook, you will build the StreamSource
incrementally. When the
StreamSource
is complete, you will apply it in a Tecton repo.
Create and set up new notebook​
On your data platform (Databricks or EMR), create a new notebook.
Databricks
Follow these instructions to connect a notebook to your Databricks cluster.
EMR
Follow these instructions. Note that specific JAR files need to be installed to use a notebook with Kinesis and Kafka.
Import modules needed to run the notebook:
import tecton
import pandas
from datetime import datetime, timedelta
from pyspark.sql.functions import col, from_json, from_utc_timestamp, when
from pyspark.sql.types import (
StructType,
StructField,
StringType,
DoubleType,
TimestampType,
BooleanType,
IntegerType,
LongType,
)
import dateutil.parser
import tempfile
Verify you can read data directly from the stream source and its corresponding batch source​
Read data directly from the batch source​
batch_data_source = "demo_fraud_v2.transactions"
batch_data = spark.sql(f"SELECT * FROM {batch_data_source} LIMIT 10")
batch_data.show()
Read data directly from the stream source​
The following helper functions are used when reading data directly from the stream source:
# writes data to a table as it is read from the stream
def write_streaming_data_to_table(stream, stream_output_table):
with tempfile.TemporaryDirectory() as d:
(
stream.writeStream.format("memory")
.queryName(stream_output_table)
.option("checkpointLocation", d)
.outputMode("append")
.start()
)
# queries the data in the table and displays the output
def query_streaming_table(stream_output_table):
stream_data = spark.sql("SELECT * FROM " + stream_output_table + " LIMIT 10")
stream_data.show()
- Kinesis (Databricks)
- Kinesis (EMR)
- Kafka
stream_schema = StructType(
[
StructField("user_id", StringType(), False),
StructField("transaction_id", StringType(), False),
StructField("category", StringType(), False),
StructField("amount", DoubleType(), False),
StructField("is_fraud", LongType(), False),
StructField("merchant", StringType(), False),
StructField("merchant_lat", DoubleType(), False),
StructField("merchant_long", DoubleType(), False),
StructField("timestamp", StringType(), False),
]
)
binary_stream = (
spark.readStream.format("kinesis")
.option("streamName", "<stream name>")
.option("region", "<region>")
.option("roleArn", "<role ARN>")
.option("initialPosition", "earliest")
.load()
)
json_stream = (
binary_stream.selectExpr("cast (data as STRING) jsonData")
.select(from_json("jsonData", stream_schema).alias("s"))
.select("s.*")
)
stream_schema = StructType(
[
StructField("user_id", StringType(), False),
StructField("transaction_id", StringType(), False),
StructField("category", StringType(), False),
StructField("amount", DoubleType(), False),
StructField("is_fraud", LongType(), False),
StructField("merchant", StringType(), False),
StructField("merchant_lat", DoubleType(), False),
StructField("merchant_long", DoubleType(), False),
StructField("timestamp", StringType(), False),
]
)
binary_stream = (
spark.readStream.format("kinesis")
.option("streamName", "<stream name>")
.option("awsSTSRoleARN", "<role ARN>")
.option("awsSTSSessionName", "tecton-materialization")
.option("startingPosition", "earliest")
.option("kinesis.client.describeShardInterval", "30s")
.option("endpointUrl", "https://<region>.amazonaws.com")
.load()
)
json_stream = (
binary_stream.selectExpr("cast (data as STRING) jsonData")
.select(from_json("jsonData", stream_schema).alias("s"))
.select("s.*")
)
stream_schema = StructType(
[
StructField("user_id", StringType(), False),
StructField("transaction_id", StringType(), False),
StructField("category", StringType(), False),
StructField("amount", DoubleType(), False),
StructField("is_fraud", LongType(), False),
StructField("merchant", StringType(), False),
StructField("merchant_lat", DoubleType(), False),
StructField("merchant_long", DoubleType(), False),
StructField("timestamp", StringType(), False),
]
)
binary_stream = (
spark.readStream.format("kafka")
.option("kafka.bootstrap.servers", "<URL(s) of Kafka broker(s)>")
.option("subscribe", "<Kafka topic name>")
.option("startingOffsets", "earliest")
.load()
)
# Additional options needed depending on your Kafka connectivity method,
# such as TLS or SASL. For example, if connecting using TLS, specify
# kafka.security.protocol (with the value "SSL"), kafka.ssl.keystore.password,
# kafka.ssl.truststore.location, and kafka.ssl.keystore.location.
json_stream = (
binary_stream.selectExpr("cast (value as STRING) jsonData")
.select(from_json("jsonData", stream_schema).alias("s"))
.select("s.*")
)
Write data to a table as it is read from the stream:
The following command should only be run for a short period of time. The command will continuously read data directly from the stream.
write_streaming_data_to_table(json_stream, "stream_output_table_json")
Query the data in the table and display the output:
query_streaming_table("stream_output_table_json")
If no data is returned after running the previous command, run the command again after a short period of time.
Map the fields of the stream source to the batch source​
Now that we have verified connectivity to the data stream, it is time to focus
on translating and mapping the stream fields. The post processor function
referenced in the post_processor
parameter of a
KafkaConfig
or
KinesisConfig
object is a function that maps the fields of the stream source to the batch
source. Following is a description of how the function works.
-
The function accepts a Spark
DataFrame
as input. The input contains one row, with one column, which is a JSON string.- If Kinesis is being used, the name of the column is
data
. - If Kafka is being used, the name of the column is
value
.
- If Kinesis is being used, the name of the column is
-
Using
from_json()
, the function converts the column containing the JSON input to aDataFrame
, which will eventually be output of the function. Each column of thisDataFrame
is:- Casted to the data type of the corresponding column in the batch source
- Renamed to match the name of the corresponding column in the batch source
-
The function returns the resulting
DataFrame
from the previous step.
Example mapping​
The following table shows an example mapping of stream source columns to batch source columns, as well as the data type of each batch source column. Note that some of the stream column and batch column names are different.
Stream column name | Batch column name | Batch column data type |
---|---|---|
user_id | user_id | string |
transaction_id | transaction_id | string |
category | category | string |
amount | amt | double |
is_fraud | is_fraud | long |
merchant | merchant | string |
merchant_latitude | merch_lat | double |
merchant_longitude | merch_long | double |
timestamp | timestamp | string |
Write the stream message post processor function​
The following function implements the mapping that is shown in the table above.
- Kinesis
- Kafka
def translate_stream(df):
from pyspark.sql.functions import col, from_json, from_utc_timestamp, when
from pyspark.sql.types import (
StructType,
StructField,
StringType,
DoubleType,
TimestampType,
BooleanType,
IntegerType,
)
stream_schema = StructType(
[
StructField("user_id", StringType(), False),
StructField("transaction_id", StringType(), False),
StructField("category", StringType(), False),
StructField("amount", StringType(), False),
StructField("is_fraud", StringType(), False),
StructField("merchant", StringType(), False),
StructField("merchant_latitude", StringType(), False),
StructField("merchant_longitude", StringType(), False),
StructField("timestamp", StringType(), False),
]
)
return (
df.selectExpr("cast (data as STRING) jsonData")
.select(from_json("jsonData", stream_schema).alias("payload"))
.select(
col("payload.user_id").alias("user_id"),
col("payload.transaction_id").alias("transaction_id"),
col("payload.category").alias("category"),
col("payload.amount").cast("double").alias("amt"),
col("payload.is_fraud").cast("long").alias("is_fraud"),
col("payload.merchant").alias("merchant"),
col("payload.merchant_latitude").cast("double").alias("merch_lat"),
col("payload.merchant_longitude").cast("double").alias("merch_long"),
from_utc_timestamp("payload.timestamp", "UTC").alias("timestamp"),
)
)
def translate_stream(df):
from pyspark.sql.functions import col, from_json, from_utc_timestamp, when
from pyspark.sql.types import (
StructType,
StructField,
StringType,
DoubleType,
TimestampType,
BooleanType,
IntegerType,
)
stream_schema = StructType(
[
StructField("user_id", StringType(), False),
StructField("transaction_id", StringType(), False),
StructField("category", StringType(), False),
StructField("amount", StringType(), False),
StructField("is_fraud", StringType(), False),
StructField("merchant", StringType(), False),
StructField("merchant_latitude", StringType(), False),
StructField("merchant_longitude", StringType(), False),
StructField("timestamp", StringType(), False),
]
)
return (
df.selectExpr("cast (value as STRING) jsonData")
.select(from_json("jsonData", stream_schema).alias("payload"))
.select(
col("payload.user_id").alias("user_id"),
col("payload.transaction_id").alias("transaction_id"),
col("payload.category").alias("category"),
col("payload.amount").cast("double").alias("amt"),
col("payload.is_fraud").cast("long").alias("is_fraud"),
col("payload.merchant").alias("merchant"),
col("payload.merchant_latitude").cast("double").alias("merch_lat"),
col("payload.merchant_longitude").cast("double").alias("merch_long"),
from_utc_timestamp("payload.timestamp", "UTC").alias("timestamp"),
)
)
Verify that the batch source and translated stream source are compatible​
The schema of the batch source must be a superset of the schema of the translated stream source. The following function performs this check.
def check_batch_stream_schema_compatibility(batch_data, translated_stream_data):
batch_set = set(batch_data.columns)
stream_set = set(translated_stream_data.columns)
if stream_set.issubset(batch_set):
print("Success! Schemas are aligned.")
print("\nThe following batch source columns are unused in the stream:")
print(batch_set.difference(stream_set))
else:
print("Error: Columns from the translated stream source are not present in the batch source:")
print(stream_set.difference(batch_set))
print("\nStream Source Columns:")
print(translated_stream_data.columns)
print("\nBatch Source Columns:")
print(batch_data.columns)
check_batch_stream_schema_compatibility(batch_data, translate_stream(binary_stream))
Run the post processor function​
Run the post processor function to verify that the columns in the stream source are mapped to the batch source, as expected.
translated_stream = translate_stream(binary_stream)
Write data to a table as it is read from the stream:
The following command should only be run for a short period of time. The command will continuously read data directly from the stream.
write_streaming_data_to_table(translated_stream, "translated_stream_output_table")
Query the data in the table and display the output:
query_streaming_table("translated_stream_output_table")
If no data is returned after running the previous command, run the command again after a short period of time.
Create the StreamSource
​
Using the configurations you used earlier to connect to the batch source and
stream source, as well as the stream post processor function you defined
earlier, define the
StreamSource
using the
following steps.
-
Define a
KinesisConfig
orKafkaConfig
object for your stream source. As part of the object definition, setpost_processor
to the name of the streaming message post processor function that you wrote earlier.Find the complete list of data source configuration classes in API Reference.
-
Define a config object such as
HiveConfig
that is specific to the type of your batch source. -
Define the
StreamSource
object, where you setbatch_config
andstream_config
to the names of the config objects you defined in steps 1 and 2.
Write the StreamSource
definition​
A StreamSource
contains these configurations:
stream_config
: The configuration for a stream source, which contains parameters for connecting to Kinesis or Kafka.batch_config
: The configuration for a batch source that backs the stream source; the batch source contains the stream's historical data.
The value of these config
s can be the name of an object (such as HiveConfig
or KafkaConfig
) or a
Data Source Function.
A Data Source Function offers more flexibility than an object.
A StreamSource
is used by a StreamFeatureView
to generate feature values
using data from both the stream and batch sources.
- Kinesis (Databricks)
- Kinesis (EMR)
- Kafka
from tecton import (
HiveConfig,
KinesisConfig,
StreamSource,
BatchSource,
DatetimePartitionColumn,
)
from datetime import timedelta
def transactions_stream_translator(df):
from pyspark.sql.functions import col, from_json, from_utc_timestamp, when
from pyspark.sql.types import (
StructType,
StructField,
StringType,
DoubleType,
TimestampType,
BooleanType,
IntegerType,
)
stream_schema = StructType(
[
StructField("user_id", StringType(), False),
StructField("transaction_id", StringType(), False),
StructField("category", StringType(), False),
StructField("amount", StringType(), False),
StructField("is_fraud", StringType(), False),
StructField("merchant", StringType(), False),
StructField("merchant_latitude", StringType(), False),
StructField("merchant_longitude", StringType(), False),
StructField("timestamp", StringType(), False),
]
)
return (
df.selectExpr("cast (data as STRING) jsonData")
.select(from_json("jsonData", stream_schema).alias("payload"))
.select(
col("payload.user_id").alias("user_id"),
col("payload.transaction_id").alias("transaction_id"),
col("payload.category").alias("category"),
col("payload.amount").cast("double").alias("amt"),
col("payload.is_fraud").cast("long").alias("is_fraud"),
col("payload.merchant").alias("merchant"),
col("payload.merchant_latitude").cast("double").alias("merch_lat"),
col("payload.merchant_longitude").cast("double").alias("merch_long"),
from_utc_timestamp("payload.timestamp", "UTC").alias("timestamp"),
)
)
partition_columns = [
DatetimePartitionColumn(column_name="partition_0", datepart="year", zero_padded=True),
DatetimePartitionColumn(column_name="partition_1", datepart="month", zero_padded=True),
DatetimePartitionColumn(column_name="partition_2", datepart="day", zero_padded=True),
]
batch_config = HiveConfig(
database="demo_fraud_v2",
table="transactions",
timestamp_field="timestamp",
datetime_partition_columns=partition_columns,
)
stream_config = KinesisConfig(
stream_name="<stream name>",
region="<region>",
initial_stream_position="earliest",
timestamp_field="timestamp",
post_processor=transactions_stream_translator,
options={"roleArn": "<role ARN>"},
)
transactions_stream = StreamSource(
name="transactions_stream",
stream_config=stream_config,
batch_config=batch_config,
)
from tecton import (
HiveConfig,
KinesisConfig,
StreamSource,
BatchSource,
DatetimePartitionColumn,
)
from datetime import timedelta
def transactions_stream_translator(df):
from pyspark.sql.functions import col, from_json, from_utc_timestamp, when
from pyspark.sql.types import (
StructType,
StructField,
StringType,
DoubleType,
TimestampType,
BooleanType,
IntegerType,
)
stream_schema = StructType(
[
StructField("user_id", StringType(), False),
StructField("transaction_id", StringType(), False),
StructField("category", StringType(), False),
StructField("amount", StringType(), False),
StructField("is_fraud", StringType(), False),
StructField("merchant", StringType(), False),
StructField("merchant_latitude", StringType(), False),
StructField("merchant_longitude", StringType(), False),
StructField("timestamp", StringType(), False),
]
)
return (
df.selectExpr("cast (data as STRING) jsonData")
.select(from_json("jsonData", stream_schema).alias("payload"))
.select(
col("payload.user_id").alias("user_id"),
col("payload.transaction_id").alias("transaction_id"),
col("payload.category").alias("category"),
col("payload.amount").cast("double").alias("amt"),
col("payload.is_fraud").cast("long").alias("is_fraud"),
col("payload.merchant").alias("merchant"),
col("payload.merchant_latitude").cast("double").alias("merch_lat"),
col("payload.merchant_longitude").cast("double").alias("merch_long"),
from_utc_timestamp("payload.timestamp", "UTC").alias("timestamp"),
)
)
partition_columns = [
DatetimePartitionColumn(column_name="partition_0", datepart="year", zero_padded=True),
DatetimePartitionColumn(column_name="partition_1", datepart="month", zero_padded=True),
DatetimePartitionColumn(column_name="partition_2", datepart="day", zero_padded=True),
]
batch_config = HiveConfig(
database="demo_fraud_v2",
table="transactions",
timestamp_field="timestamp",
datetime_partition_columns=partition_columns,
)
stream_config = KinesisConfig(
stream_name="<stream name>",
region="<region name>",
initial_stream_position="earliest",
timestamp_field="timestamp",
post_processor=transactions_stream_translator,
options={"awsSTSRoleARN": "<role ARN>"},
)
transactions_stream = StreamSource(
name="transactions_stream",
stream_config=stream_config,
batch_config=batch_config,
)
Note: In the KafkaConfig
definition below, additional
parameters are needed depending on your Kafka connectivity method. See
Connecting
Kafka Streams for more details.
from tecton import (
HiveConfig,
KafkaConfig,
StreamSource,
BatchSource,
DatetimePartitionColumn,
)
from datetime import timedelta
import os
def translate_stream(df):
from pyspark.sql.functions import col, from_json, from_utc_timestamp, when
from pyspark.sql.types import (
StructType,
StructField,
StringType,
DoubleType,
TimestampType,
BooleanType,
IntegerType,
)
stream_schema = StructType(
[
StructField("user_id", StringType(), False),
StructField("transaction_id", StringType(), False),
StructField("category", StringType(), False),
StructField("amount", StringType(), False),
StructField("is_fraud", StringType(), False),
StructField("merchant", StringType(), False),
StructField("merchant_latitude", StringType(), False),
StructField("merchant_longitude", StringType(), False),
StructField("timestamp", StringType(), False),
]
)
return (
df.selectExpr("cast (value as STRING) jsonData")
.select(from_json("jsonData", stream_schema).alias("payload"))
.select(
col("payload.user_id").alias("user_id"),
col("payload.transaction_id").alias("transaction_id"),
col("payload.category").alias("category"),
col("payload.amount").cast("double").alias("amt"),
col("payload.is_fraud").cast("long").alias("is_fraud"),
col("payload.merchant").alias("merchant"),
col("payload.merchant_latitude").cast("double").alias("merch_lat"),
col("payload.merchant_longitude").cast("double").alias("merch_long"),
from_utc_timestamp("payload.timestamp", "UTC").alias("timestamp"),
)
)
partition_columns = [
DatetimePartitionColumn(column_name="partition_0", datepart="year", zero_padded=True),
DatetimePartitionColumn(column_name="partition_1", datepart="month", zero_padded=True),
DatetimePartitionColumn(column_name="partition_2", datepart="day", zero_padded=True),
]
batch_config = HiveConfig(
database="demo_fraud_v2",
table="transactions",
timestamp_field="timestamp",
datetime_partition_columns=partition_columns,
)
stream_config = KafkaConfig(
kafka_bootstrap_servers="<URL(s) of Kafka broker(s)>",
topics="<topic name>",
post_processor=translate_stream,
timestamp_field="timestamp",
)
transactions_stream = StreamSource(name="transactions_stream", stream_config=stream_config, batch_config=batch_config)
Test the StreamSource
​
You can verify that your StreamSource
is connected properly by following the
Testing Data Sources guide.
Create a Stream Feature View that uses the Stream Source​
from datetime import datetime
from datetime import timedelta
from entities import user
from transactions import transactions_stream
from tecton import stream_feature_view, Attribute
from tecton.types import Field, Int64, String, Bool
@stream_feature_view(
source=transactions_stream,
entities=[user],
timestamp_field="timestamp",
features=[
Attribute("transaction_id", Int64),
Attribute("category", String),
Attribute("amt", Int64),
Attribute("is_fraud", Bool),
Attribute("merchant", String),
Attribute("merch_lat", Int64),
Attribute("merch_long", Int64),
],
mode="spark_sql",
online=True,
offline=True,
feature_start_time=datetime(2022, 5, 20),
batch_schedule=timedelta(days=1),
ttl=timedelta(days=30),
)
def stream_features(transactions_stream):
return f"""
SELECT
user_id,
transaction_id,
category,
amt,
is_fraud,
merchant,
merch_lat,
merch_long,
timestamp
FROM
{transactions_stream}
"""
A StreamFeatureView
applies the same transformation to both the stream and the
batch sources. If the data from the stream and batch sources do not have the
same schema, then define a post_processor
function for at least one data
source to output the expected schema for the transformation.
Test the Stream Feature View​
Get the stream feature view from the workspace:
fv = ws.get_feature_view("stream_features")
Test the batch source with the stream feature view​
Set the start
and end
times for which you will use to generate feature
values.
end = datetime.now()
start = end - timedelta(days=30)
Call the run_transformation
method of the feature view to get feature data for
the timestamp range of start
to end
, and display the generated feature
values.
offline_features = fv.run_transformation(start_time=start, end_time=end).to_spark().limit(10)
offline_features.show()
Test the stream source with the stream feature view​
Call the run_stream
method on fv
to write incoming records from the data
source to the TEMP_TABLE
table.
The following command should only be run for a short period of time. The command will continuously read data from the stream source.
fv.run_stream(output_temp_table="TEMP_TABLE")
Query the data in the table and display the output:
spark.sql("SELECT * FROM TEMP_TABLE LIMIT 10").show()
If no data is returned after running the previous command, run the command again after a short period of time.
Once you have successfully tested your stream source with a streaming feature view, your stream source is ready for use. For information on how a streaming feature view works, and how to define one, see Stream Feature View.