Skip to main content
Version: 0.9

KafkaConfig

Summary​

Configuration used to reference a Kafka stream.

The KafkaConfig class is used to create a reference to a Kafka stream.

This class is used as an input to a StreamSource’s parameter stream_config. Declaring this configuration class alone will not register a Data Source. Instead, declare as a part of StreamSource that takes this configuration class instance as a parameter.

Example​

import datetime
import pyspark
from tecton import KafkaConfig


def raw_data_deserialization(df: pyspark.sql.DataFrame) -> pyspark.sql.DataFrame:
from pyspark.sql.functions import from_json, col
from pyspark.sql.types import StringType, TimestampType

PAYLOAD_SCHEMA = StructType().add("accountId", StringType(), False).add("transaction_id", StringType(), False)

EVENT_ENVELOPE_SCHEMA = StructType().add("timestamp", TimestampType(), False).add("payload", PAYLOAD_SCHEMA, False)

value = col("value").cast("string")
df = df.withColumn("event", from_json(value, EVENT_ENVELOPE_SCHEMA))
df = df.withColumn("accountId", col("event.payload.accountId"))
df = df.withColumn("transaction_id", col("event.payload.transaction_id"))
df = df.withColumn("timestamp", col("event.timestamp"))

return df


# Declare Kafka Config instance object that can be used as an argument in StreamSource
click_stream_kafka_ds = KafkaConfig(
kafka_bootstrap_servers="127.0.0.1:12345",
topics="click-events-json",
timestamp_field="click_event_timestamp",
post_processor=raw_data_deserialization,
)

Methods​

__init__(...)​

Instantiates a new KafkaConfig.

Parameters​

  • kafka_bootstrap_servers (str) – A comma-separated list of the Kafka bootstrap server addresses. Passed directly to the Spark kafka.bootstrap.servers option.

  • topics (str) – A comma-separated list of Kafka topics to subscribe to. Passed directly to the Spark subscribe option.

  • post_processor – Python user defined function f(DataFrame) -> DataFrame that takes in raw Pyspark data source DataFrame and translates it to the DataFrame to be consumed by the Feature View. See an example of post_processor in the User Guide.

  • timestamp_field (str) – Name of the column containing timestamp for watermarking.

  • watermark_delay_threshold (timedelta) – Watermark time interval, e.g: timedelta(hours=36), used by Spark Structured Streaming to account for late-arriving data. See: Productionizing a Stream. (Default: datetime.timedelta(days=1))

  • options (Optional[Dict[str, str]]) – A map of additional Spark readStream options (Default: None)

  • ssl_keystore_location (Optional[str]) – An DBFS (Databricks only) or S3 URI that points to the keystore file that should be used for SSL brokers. Note for S3 URIs, this must be configured by your Tecton representative. (Default: None) Examples: s3://tecton-<deployment name>/kafka-credentials/kafka_client_keystore.jks and dbfs:/kafka-credentials/kafka_client_keystore.jks

  • ssl_keystore_password_secret_id (Optional[str]) – The config key for the password for the Keystore. Should start with SECRET_. (Default: None) Example: SECRET_KAFKA_PRODUCTION.

  • ssl_truststore_location (Optional[str]) – An DBFS (Databricks only) or S3 URI that points to the truststore file that should be used for SSL brokers. Note for S3 URIs, this must be configured by your Tecton representative. If not provided, the default truststore for your compute provider will be used. Note that this is required for AWS-signed keystores on Databricks. (Default: None) Examples: s3://tecton-<deployment name>/kafka-credentials/kafka_client_truststore.jks and dbfs:/kafka-credentials/kafka_client_truststore.jks

  • ssl_truststore_password_secret_id (Optional[str]) – The config key for the password for the Truststore. Should start with SECRET_. (Default: None). Example: SECRET_KAFKA_PRODUCTION.

  • security_protocol (Optional[str]) – Security protocol passed to kafka.security.protocol. See Kafka documentation for valid values. (Default: None)

  • deduplication_columns (Optional[List[str]]) – Columns in the stream data that uniquely identify data records. Used for de-duplicating. Spark will drop rows if there are duplicates in the deduplication_columns, but only within the watermark delay window. (Default: None)

Returns​

A KafkaConfig class instance.

Was this page helpful?