pandas_batch_config
Summary​
Declare atecton.PandasBatchConfig
for configuring a Batch Source with a Data Source Function.
The function takes in an optional tecton.FilterContext
, if supports_time_filtering=True
.Parameters
data_delay
(Optional
[datetime.timedelta
]) - By default, incremental materialization jobs run immediately at the end of the batch schedule period. This parameter configures how long they wait after the end of the period before starting, typically to ensure that all data has landed. For example, if a feature view has abatch_schedule
of 1 day and one of the data source inputs hasdata_delay=timedelta(hours=1)
set, then incremental materialization jobs will run at01:00
UTC. Default:0:00:00
supports_time_filtering
(Optional
[bool
]) - When set toTrue
, the Data Source Function must take thefilter_context
parameter and implement time filtering logic.supports_time_filtering
must be set toTrue
if<data source>.get_dataframe()
is called withstart_time
orend_time
.supports_time_filtering
must also be set toTrue
if usingtecton.declarative.FilteredSource
with a Data Source when defining aFeatureView
. TheFeatureView
will call the Data Source Function with thetecton.FilterContext
, which has thestart_time
andend_time
set. Default:false
secrets
(Union
[Dict
[str
,Union
[Secret
,str
]],NoneType
]) - A dictionary of Secret references that will be resolved and provided to the Data Source Function at runtime. During local development and testing, strings may be used instead Secret references. Default:None
Returns
Returns apandas.DataFrame
.Example
from tecton import pandas_batch_config, Secret@pandas_batch_config(supports_time_filtering=True,secrets={"s3_bucket": Secret(scope="dev", key="user_data_s3_bucket")})def parquet_data_source_function(filter_context, secrets):import pyarrow.parquet as pqfrom pyarrow.fs import S3FileSystemfilters=None# Handle time filtering, ideally using partition keysif filter_context:filters = []if filter_context.start_time:filters.append(("created_at", ">=", filter_context.start_time.replace(tzinfo=None)))if filter_context.end_time:filters.append(("created_at", "<", filter_context.end_time.replace(tzinfo=None)))s3_bucket = secrets["s3_bucket"]dataset = pq.ParquetDataset(f"s3://{s3_bucket}/path/to/data.pq",filesystem=S3FileSystem(),use_legacy_dataset=False,filters=filters if len(filters) > 0 else None)return dataset.read_pandas().to_pandas()