Skip to main content
Version: Beta 🚧

FilterContext

Summary​

FilterContext is passed as an argument to the data source function when supports_time_filtering is set to True. Using these parameters enables optimized query patterns for improved performance:
 
  • The method <data source>.get_dataframe() can be invoked with the arguments start_time or end_time.
  • When defining a Feature View, a FilteredSource can be paired with a Data Source. The Feature View will then pass FilterContext into the Data Source Function
     
    Note that Data Source Functions are expected to implement their own filtering logic.

Example

from tecton import spark_batch_config
from pyspark.sql.functions import col
@spark_batch_config(supports_time_filtering=True)
def hive_data_source_function(spark, filter_context):
spark.sql(f"USE {hive_db_name}")
df = spark.table(user_hive_table)
ts_column = "timestamp"
# Data Source Function handles its own filtering logic here
if filter_context:
if filter_context.start_time:
df = df.where(col(ts_column) >= filter_context.start_time)
if filter_context.end_time:
df = df.where(col(ts_column) < filter_context.end_time)
return df

Methods​

__init__(...)​

Parameters

  • start_time (Optional[datetime.datetime]) - If specified, data source will only include items with timestamp column >= start_time

  • end_time (Optional[datetime.datetime]) - If specified, data source will only include items with timestamp column < end_time

Was this page helpful?

🧠 Hi! Ask me anything about Tecton!

Floating button icon