Skip to main content
Version: Beta 🚧

FileConfig

Summary​

Configuration used to reference a file or directory (S3, etc.)
 
The FileConfig class is used to create a reference to a file or directory of files in S3, HDFS, or DBFS.
 
The schema of the data source is inferred from the underlying file(s). It can also be modified using the post_processor parameter.
 
This class is used as an input to a DataSource's parameter batch_config. Declaring this configuration class alone will not register a Data Source. Instead, declare as a part of BatchSource that takes this configuration class instance as a parameter.
important

If your files are partitioned, simply provide the path to the root folder. For example: uri = "s3://<bucket-name>/<root-folder>/"

Tecton will use Spark partition discovery to find all partitions and infer the schema.

When reading a highly-partitioned file, Tecton recommends setting the schema_uri parameter to speed up schema inference. For more details, review our documentation here.

Attributes​

NameData TypeDescription
data_delaytimedeltaReturns the duration that materialization jobs wait after the batch_schedule before starting, typically to ensure that all data has landed.

Methods​

NameDescription
__init__(...)Instantiates a new FileConfig.

__init__(...)​

Instantiates a new FileConfig.
 
Example of a FileConfig declaration:

Parameters

  • uri (str) - S3 or HDFS path to file(s).

  • file_format (str) - File format. "json", "parquet", or "csv"

  • timestamp_field (Optional[str]) - The timestamp column in this data source that should be used by FilteredSource to filter data from this source, before any feature view transformations are applied. Only required if this source is used with FilteredSource. Default: None

  • timestamp_format (Optional[str]) - Format of string-encoded timestamp column (e.g. "yyyy-MM-dd'T'hh:mm:ss.SSS'Z'"). If the timestamp string cannot be parsed with this format, Tecton will fallback and attempt to use the default timestamp parser. Default: None

  • post_processor (Optional[Callable]) - Python user defined function f(DataFrame) -> DataFrame that takes in raw Pyspark data source DataFrame and translates it to the DataFrame to be consumed by the Feature View. Default: None

  • schema_uri (Optional[str]) - A file or subpath of "uri" that can be used for fast schema inference. This is useful for speeding up plan computation for highly partitioned data sources containing many files. Default: None

  • schema_override (Optional[pyspark.sql.types.StructType]) - A pyspark.sql.types.StructType object that will be used as the schema when reading from the file. If omitted, the schema will be inferred automatically. Default: None

  • data_delay (timedelta) - This parameter configures how long materialization jobs wait after the end of the batch schedule period before starting, typically to ensure that all data has landed. For example, if a feature view has a batch_schedule of 1 day and one of the data source inputs has data_delay=timedelta(hours=1) set, then incremental materialization jobs will run at 01:00 UTC. Default: 0:00:00

Returns

A FileConfig class instance.

Example

from tecton import FileConfig, BatchSource
# Define a post-processor function to convert the temperature from Celsius to Fahrenheit
def convert_temperature(df):
from pyspark.sql.functions import udf,col
from pyspark.sql.types import DoubleType
udf_convert = udf(lambda x: x * 1.8 + 32.0, DoubleType())
converted_df = df.withColumn("Fahrenheit", udf_convert(col("Temperature"))).drop("Temperature")
return converted_df
# Declare a FileConfig, which can be used as a parameter to a `BatchSource`
ad_impressions_file_config = FileConfig(uri="s3://tecton.ai.public/data/ad_impressions_sample.parquet",
file_format="parquet",
timestamp_field="timestamp",
post_processor=convert_temperature)
# This FileConfig can then be included as a parameter for a BatchSource declaration.
# For example,
ad_impressions_batch = BatchSource(name="ad_impressions_batch",
batch_config=ad_impressions_file_config)

Was this page helpful?