FileConfig
Summary​
Configuration used to reference a file or directory (S3, etc.)Â
The FileConfig class is used to create a reference to a file or directory of files in S3, HDFS, or DBFS.
Â
The schema of the data source is inferred from the underlying file(s). It can also be modified using the
post_processor
parameter.Â
This class is used as an input to a
DataSource
's parameter batch_config
. Declaring this configuration class alone
will not register a Data Source. Instead, declare as a part of BatchSource
that takes this configuration class
instance as a parameter.
important
If your files are partitioned, simply provide the path to the root folder. For
example: uri = "s3://<bucket-name>/<root-folder>/"
Tecton will use Spark partition discovery to find all partitions and infer the schema.
When reading a highly-partitioned file, Tecton recommends setting the
schema_uri
parameter to speed up schema inference. For more details, review
our documentation
here.
Attributes​
Name | Data Type | Description |
---|---|---|
data_delay | timedelta | Returns the duration that materialization jobs wait after the batch_schedule before starting, typically to ensure that all data has landed. |
Methods​
Name | Description |
---|---|
__init__(...) | Instantiates a new FileConfig. |
__init__(...)​
Instantiates a new FileConfig.Â
Example of a FileConfig declaration:
Parameters
uri
(str
) - S3 or HDFS path to file(s).file_format
(str
) - File format. "json", "parquet", or "csv"timestamp_field
(Optional
[str
]) - The timestamp column in this data source that should be used byFilteredSource
to filter data from this source, before any feature view transformations are applied. Only required if this source is used withFilteredSource
. Default:None
timestamp_format
(Optional
[str
]) - Format of string-encoded timestamp column (e.g. "yyyy-MM-dd'T'hh:mm:ss.SSS'Z'"). If the timestamp string cannot be parsed with this format, Tecton will fallback and attempt to use the default timestamp parser. Default:None
post_processor
(Optional
[Callable
]) - Python user defined functionf(DataFrame) -> DataFrame
that takes in raw Pyspark data source DataFrame and translates it to the DataFrame to be consumed by the Feature View. Default:None
schema_uri
(Optional
[str
]) - A file or subpath of "uri" that can be used for fast schema inference. This is useful for speeding up plan computation for highly partitioned data sources containing many files. Default:None
schema_override
(Optional
[pyspark.sql.types.StructType
]) - A pyspark.sql.types.StructType object that will be used as the schema when reading from the file. If omitted, the schema will be inferred automatically. Default:None
data_delay
(timedelta
) - This parameter configures how long materialization jobs wait after the end of the batch schedule period before starting, typically to ensure that all data has landed. For example, if a feature view has abatch_schedule
of 1 day and one of the data source inputs hasdata_delay=timedelta(hours=1)
set, then incremental materialization jobs will run at01:00
UTC. Default:0:00:00
Returns
AFileConfig
class instance.Example
from tecton import FileConfig, BatchSource# Define a post-processor function to convert the temperature from Celsius to Fahrenheitdef convert_temperature(df):from pyspark.sql.functions import udf,colfrom pyspark.sql.types import DoubleTypeudf_convert = udf(lambda x: x * 1.8 + 32.0, DoubleType())converted_df = df.withColumn("Fahrenheit", udf_convert(col("Temperature"))).drop("Temperature")return converted_df# Declare a FileConfig, which can be used as a parameter to a `BatchSource`ad_impressions_file_config = FileConfig(uri="s3://tecton.ai.public/data/ad_impressions_sample.parquet",file_format="parquet",timestamp_field="timestamp",post_processor=convert_temperature)# This FileConfig can then be included as a parameter for a BatchSource declaration.# For example,ad_impressions_batch = BatchSource(name="ad_impressions_batch",batch_config=ad_impressions_file_config)