On-Demand Feature Views and Struct Types
This feature is not supported in Tecton on Snowflake.
If you are interested in this functionality, please file a feature request.
On-Demand Feature Views that Consume Struct Types
An On-Demand Feature View (ODFV) can depend on sources that output a Struct
data type e.g. BatchFeatureView
, RequestSource
. There are a few limitations
when ODFVs depend on sources with Struct
types to keep in mind.
On all Computes​
- Pandas mode ODFVs cannot have a
RequestSource
with aStruct
type as a source.
On Spark Compute​
Struct types are immutable in offline queries in python mode​
In most cases, Tecton feature view definitions are reusable in offline and
online queries. However, there is an exception in python mode ODFVs that depend
on a source with a Struct
when the offline compute is Spark.
When executing a python mode ODFV offline on Spark, the ODFV's transform
function is executed as a python UDF. PySpark passes the source's Struct
to
the transform as a pyspark.sql.Row
object, which is immutable. In online
queries, however, Tecton passes the source's Struct
to the transform as a
dict
, which is mutable.
This means if you are trying to mutate a source's Struct
in the ODFV
transform, your offline queries will produce an error like the following:
Running the transformation resulted in the following error: TypeError: 'Row' object does not support item assignment
You can account for the Row
object immutability by adjusting your transform
function to convert Row
objects to dict
using Row.asDict()
before you
mutate them. This will allow your ODFV to succeed Online and Offline as
expected.
request_source = RequestSource(
[
Field(
"struct_field",
Struct(
[
Field("string_field", String),
]
),
),
]
)
@on_demand_feature_view(
mode="python",
sources=[request_source],
...,
)
def my_odfv(request):
from pyspark.sql import Row
with_spark = isinstance(request["struct_field"], Row)
struct_field = request["struct_field"].asDict(recursive=True) if with_spark else request["struct_field"]
struct_field["string_field"] += "_some_suffix"
return {"struct_feature": struct_field}
On-Demand Feature Views that Return Struct Features
You can include a Struct
data type in the output schema of an On-Demand
Feature View (ODFV). A Struct
can contain multiple fields with mixed data
types.
A Struct
can be nested within other complex types. For example, you can have a
Struct
within a Struct
, or an array of Struct
s.
Using a Struct
in the output schema of an ODFV allows you to easily parse the
ODFV's output when it contains multiple feature values.
Example usage: An output Struct
containing two fields​
The ODFV definition​
from tecton import on_demand_feature_view, RequestSource
from tecton.types import Array, Field, Float64, String, Struct
request_source = RequestSource([Field("input_float", Float64)])
output_schema = [
Field(
"output_struct",
Struct([Field("string_field", String), Field("float64_field", Float64)]),
)
]
@on_demand_feature_view(
mode="python",
sources=[request_source],
schema=output_schema,
description="Output a struct with two fields.",
)
def simple_struct_example_odfv(request):
input_float = request["input_float"]
return {
"output_struct": {
"string_field": str(input_float * 2),
"float64_field": input_float * 2,
}
}
Example usage in a notebook​
import tecton
import pandas
spine_df = pandas.DataFrame(data={"input_float": [1.23, 3.22]})
simple_struct_example_odfv = tecton.get_workspace("my_workspace").get_feature_view("simple_struct_example_odfv")
simple_struct_example_odfv.get_historical_features(spine_df).to_spark().show(10, False)
Output:
+-----------+-----------------------------------------+
|input_float|simple_struct_example_odfv__output_struct|
+-----------+-----------------------------------------+
|1.23 |{2.46, 2.46} |
|3.22 |{6.44, 6.44} |
+-----------+-----------------------------------------+
Example HTTP request​
$ curl -X POST http://<your_cluster>.tecton.ai/api/v1/feature-service/get-features\
-H "Authorization: Tecton-key $TECTON_API_KEY" -d\
'{
"params": {
"workspace_name": "my_workspace",
"feature_view_name": "simple_struct_example_odfv",
"request_context_map": {
"input_float": 1.23
},
"metadata_options": {
"include_names": true,
"include_data_types": true
}
}
}'
Output:
{
"result": {
"features": [["2.46", 2.46]]
},
"metadata": {
"features": [
{
"name": "output_struct",
"dataType": {
"type": "struct",
"fields": [
{
"name": "string_field",
"dataType": {
"type": "string"
}
},
{
"name": "float64_field",
"dataType": {
"type": "float64"
}
}
]
}
}
]
}
}
Example usage: An output Struct
containing an array of Struct
s with some nulls​
The ODFV definition​
from tecton import on_demand_feature_view, RequestSource
from tecton.types import Array, Field, Float64, String, Struct
request_source = RequestSource([Field("input_float", Float64)])
output_schema = [
Field(
"array_of_structs",
Array(Struct([Field("string_field", String), Field("float64_field", Float64)])),
),
]
@on_demand_feature_view(
mode="python",
sources=[request_source],
schema=output_schema,
description="Output an array of Structs with some null examples.",
)
def array_of_structs_example_odfv(request):
input_float = request["input_float"]
return {
"array_of_structs": [
{"string_field": str(input_float * 2), "float64_field": input_float * 2},
{"string_field": str(input_float * 3), "float64_field": input_float * 3},
# A Struct missing one key and setting the other explicitly to None. These are equivalent
# was to return a "null" field.
{
"string_field": None,
# "float64_field": ...
},
# All Tecton data types are nullable, including Structs.
None,
]
}
Example usage in a notebook​
array_of_structs_example_odfv = tecton.get_workspace("my_workspace").get_feature_view("array_of_structs_example_odfv")
array_of_structs_example_odfv.get_historical_features(spine_df).to_spark().show(10, False)
Output:
+-----------+------------------------------------------------+
|input_float|array_of_structs_example_odfv__array_of_structs |
+-----------+------------------------------------------------+
|1.23 |[{2.46, 2.46}, {3.69, 3.69}, {null, null}, null]|
|3.22 |[{6.44, 6.44}, {9.66, 9.66}, {null, null}, null]|
+-----------+------------------------------------------------+
Example HTTP request​
$ curl -X POST http://<your_cluster>.tecton.ai/api/v1/feature-service/get-features\
-H "Authorization: Tecton-key $TECTON_API_KEY" -d\
'{
"params": {
"workspace_name": "my_workspace",
"feature_view_name": "array_of_structs_example_odfv",
"request_context_map": {
"input_float": 1.23
},
"metadata_options": {
"include_names": true,
"include_data_types": true
}
}
}'
Output:
{
"result": {
"features": [[["2.46", 2.46], ["3.69", 3.69], [null, null], null]]
},
"metadata": {
"features": [
{
"name": "array_of_structs",
"dataType": {
"type": "array",
"elementType": {
"type": "struct",
"fields": [
{
"name": "string_field",
"dataType": {
"type": "string"
}
},
{
"name": "float64_field",
"dataType": {
"type": "float64"
}
}
]
}
}
}
]
}
}
Note that
null
or missing fields are returned in the JSON response as JSONnull
, and that there is a difference between aStruct
containing all null values and a nullStruct
. Both are shown in this example.