Read Online Features for Inference using the Python Client
Tecton provides an open-source client library in Python for reading features from the online store. The Python Client API Reference can be found here.
Installing the Python Client library​
The latest version of the Tecton Python Client can be found on PyPi.
For any project, install the client library using pip
:
pip install tecton-client
Creating an API key to authenticate to the HTTP API​
To authenticate your requests to the HTTP API, you will need to create a Service Account to obtain an API key, and grant that Service Account the Consumer role for your workspace:
- Create a Service Account to obtain your API key.
tecton service-account create \
--name "sample-service-account" \
--description "An online inference sample"
Output:
Save this API Key - you will not be able to get it again.
API Key: <Your-api-key>
Service Account ID: <Your-Service-Account-Id>
- Assign the Consumer role to the Service Account.
tecton access-control assign-role --role consumer \
--workspace <Your-workspace> \
--service-account <Your-Service-Account-Id>
Output:
Successfully updated role.
Save this API key for the next step.
TectonClient Example​
To call the get-features
endpoint, first create a client using the base URL
for your cluster (https://<your Tecton instance prefix>.tecton.ai
) and the API
key from the step above. Then call get_features()
. Below is an example calling
the fraud_detection_feature_service:v2
service in https://explore.tecton.ai/:
from tecton_client import TectonClient
tecton_client = TectonClient(url="https://explore.tecton.ai/", api_key="your-api-key", default_workspace_name="prod")
resp = tecton_client.get_features(
feature_service_name="fraud_detection_feature_service:v2",
join_key_map={"user_id": "user_4407104885"},
request_context_map={"amount": 500.00},
)
print(resp.get_features_dict())
You can add additional metadata for debugging such as the the server response time using the metadata_options argument:
from tecton_client import MetadataOptions
resp = tecton_client.get_features(
feature_service_name="fraud_detection_feature_service:v2",
join_key_map={"user_id": "user_4407104885"},
request_context_map={"amount": 500.00},
metadata_options=MetadataOptions(include_slo_info=True),
)
print(resp.metadata)
AsyncTectonClient Example​
The AsyncTectonClient has the same method signatures as the (synchronous) TectonClient, but is designed to leverage Python’s async/await syntax for non-blocking I/O operations. To use the asynchronous features, you will need some familiarity with Python’s async/await syntax. Replace your synchronous client calls with the async counterparts provided by Tecton, and manage them within an async function or an event loop.
import asyncio
from tecton_client import AsyncTectonClient
async_client = AsyncTectonClient(
url="https://explore.tecton.ai/",
api_key="your-api-key",
default_workspace_name="prod",
)
async def fetch_data():
resp = async_client.get_features(
feature_service_name="fraud_detection_feature_service:v2",
join_key_map={"user_id": "user_4407104885"},
request_context_map={"amount": 500.00},
)
print(resp.result.features)
asyncio.run(fetch_data())
For more information on using the client library, refer to the official documentation.