tecton.DatabricksClusterConfig¶
-
class
tecton.
DatabricksClusterConfig
(instance_type=None, instance_availability=None, number_of_workers=None, first_on_demand=None, root_volume_size_in_gb=None, extra_pip_dependencies=None, spark_config=None)¶ Configuration used to specify materialization cluster options.
This class describes the attributes of the new clusters which are created in Databricks during materialization jobs. You can configure options of these clusters, like cluster size and extra pip dependencies.
- Parameters
instance_type (
Optional
[str
]) – Instance type for the cluster. Must be a valid type as listed in https://databricks.com/product/aws-pricing/instance-types. If not specified, a value determined by the Tecton backend is used.instance_availability (
Optional
[str
]) – Instance availability for the cluster : “spot”, “on_demand”, or “spot_with_fallback”. If not specified, default is spot.first_on_demand (
Optional
[int
]) – The first first_on_demand nodes of the cluster will use on_demand instances. The rest will use the type specified by instance_availability. If first_on_demand >= 1, the driver node use on_demand instance type.number_of_workers (
Optional
[int
]) – Number of instances for the materialization job. If not specified, a value determined by the Tecton backend is usedroot_volume_size_in_gb (
Optional
[int
]) – Size of the root volume in GB per instance for the materialization job. If not specified, a value determined by the Tecton backend is used.extra_pip_dependencies (
Optional
[List
[str
]]) – Extra pip dependencies to be installed on the cluster. Can be PyPI packages or S3 wheels/eggs.spark_config (
Optional
[Dict
[str
,str
]]) – Map of Spark configuration options and their respective values that will be passed to the FeatureView materialization Spark cluster. Currently, we support only the following options:spark.driver.memory
,spark.driver.memoryOverhead
,spark.executor.memory
,spark.executor.memoryOverhead
Note on
extra_pip_dependencies
: This is a list of pip package names that will be installed during materialization. These libraries will only be available to use inside Spark UDFs. For example, if you setextra_pip_dependencies=["tensorflow"]
, you can use it in your transformation as shown below.An example of DatabricksClusterConfig.
from tecton import batch_feature_view, Input, DatabricksClusterConfig @batch_feature_view( inputs={'credit_scores': Input(credit_scores_batch)}, # Can be an argument instance to a batch feature view decorator batch_cluster_config = DatabricksClusterConfig( instance_type = 'm5.2xlarge', spark_config = {"spark.executor.memory" : "12g"} extra_pip_dependencies=["tensorflow"], ), # Other named arguments to batch feature view ... ) # Use the tensorflow package in the UDF since tensorflow will be installed # on the Databricks Spark cluster. The import has to be within the UDF body. Putting it at the # top of the file or inside transformation function won't work. @transformation(mode='pyspark') def test_transformation(transformation_input): from pyspark.sql import functions as F from pyspark.sql.types import IntegerType def my_tensorflow(x): import tensorflow as tf return int(tf.math.log1p(float(x)).numpy()) my_tensorflow_udf = F.udf(my_tensorflow, IntegerType()) return transformation_input.select( 'entity_id', 'timestamp', my_tensorflow_udf('clicks').alias('log1p_clicks') )
Methods
Initialize self.
-
__init__
(instance_type=None, instance_availability=None, number_of_workers=None, first_on_demand=None, root_volume_size_in_gb=None, extra_pip_dependencies=None, spark_config=None)¶ Initialize self. See help(type(self)) for accurate signature.